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APPLICATION OF VARYATIONAL EQUATION OF MOTION
TO THS NONLINEAR VIBKATION ANALYSIS
OF
HOMOCENEOUS AND LAYERED PLATES AND SHELLS1

Yi-Yuan Yu2

ABSTRACT

An integrated procedure is presented for applying
the variational equation of motion to the approximate
analysis of nonlinear vibrations of homogenseous and
layered plates and shells involvirg large deflections.
The procedure consists of a seqguence of variational
approximations. The first of these involves an apnroxi-
mation in the thickness direction and yields - system of
equations of motion and boundary conditions i.:r the plate
or shell. Subsequent variational approximati ns with re-
spect to the rem:.ining spzce coordinates and *ime, wher-
ever neecded, lead to a solution to the nonlir=ar *-lbration
problem. The procedure is illustrated by a study of the
nonlinear free vibrations of homogeneous and s-=dwich cy-
lindrical shells, and it appears to be applicabie to still
many other homogeneous and composite elaatic :,stems.

lThis research was supported by the United States Air
Force under Contract Ar 49(638)-453 monitored by the
Alr Porce Office of Scientific Research.

2professor, Department of Mechanical Engineering,
Polytechnic Institute of Brooklyn.




INTRODUCTION

In soiving certain equilibrium and vibration problems
in the linear or nonlinear theory of elasticity, two dis-
tinct and unrelated steps are often taken. 1In the case of
a plate or shell problem, for instance, an approximate
system of equations that governs the problem is usually de-
rived first by the use of one of a wide variety of avail-
able methods. Then, when the system of equations deduced
cannot be solved exactly, a wide variety of methods is
again available for obtaining an approximate solution of
the equations., The method used for deriving the approxi-
mate equaticns ard that used for solving the equations
usually bear no relation to each nther.

One of the main purposes of this paper is to advo-
cate an integrated approximate procedure of solving a
large class of problems in the linear or noniinear theory
of elasticity, and in particular, problems «.f plates and
shells cf the iayered as well as homogeneousx type of con-
struction, solely oa the basis of the varia*.->nai egquation
of motion. It is an integrated procedure i that the
aforementioned two steps are no longer unrelated to each
other, 1In fact, the procedure consists of a sequence of
variational approximations with respect to the space and
time coordinates, carried out in relation to the differ-
ential equations and/or the boundary conditicis. Although
not much originality can be claimed on the variational
approach, the treatment does make the fullest systematic
use of the variational equation of motion. Besides, it
not only integrates some of the variational approximations
which have been known only as unrelated individual pro-
cedures, but it also reveals the possibility of having
more general variational approximations.

The variational equation of motion in the theory of
elasticity is a direct consegquence of Hamilton's principle
and applies to both linear and nonlinear cases. The usual
formulation of the equation, as given in Love's book [1l1,
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contains only the volume and surface integrals with re-

‘spect to the space coordinates. In this paper we shall

further include the integration with respect to time as
a necessary part in the formulation of the variational
equation of motion. Without the additional time inte-
gration, variational appro—-imations can only be perform-
ed with respect to the space coordinates,

In vhat follows the proposed procedure is first out-
lined. Then, as illustrations and as problems of interest
by themselves, approximate systems of nonlinear equations
of motion and boundary conditions of homogeneous and sand-
wich cylindrical shells are derived and subsequently solved
for the cases of ax.ally symmetrical vibrationa of closed
shells with ismovable hinged 2dgeu. Results for the non-
linear frequencies are finally discussed.

o sn——.




The Inteqrated Variational Approach

On the basis of the linear or nonlinear variational
equation of motion in a form as has just been specified,
the solutions to a large class of prcblems in the theory
of elasticity, and in particular problems of homogeneous
and layered plates and shells, may be obtained by carry-
ing out a sequence of successive variational approximations.
In the first of these approximations, and in the case of
plate and shell problems, for inatance, the dependence of
the displacements on the thickness coordinate is assumed,
and integration is carried out with respect to this co-
ordinate. Th: firs* variational approximation thus consti-
tutes essentially the procesi of dsriving plate or shell
equations or other approximate equations. However, even
in such a process in this first step, the vari:.tional ecquation
of motion does not appear to have been fully made use of
before, since, until recently, only the volume integral,
and only that in tne linear variational equaticn of motion
(without the time integration), has been employ:=2 in the
derivation of linear differential equations of motion of
plates [2-7] and shells (8. The surface integral in
either the linear or nonlinear variational equation of
motion is believed to have been used for the first time
in the recent derivation of the appropriate boundary con-
ditions in reference 9 for sandwich plates. Al .lough the
boundary conditions (as well as the equations of motion)
may also be derived by other means, the integrated treaty-
ment on the basis of the variation equation of motion has
the advantage of being simple and straightforward, and it
permits the surface traction terms that appear in the
boundary conditions to be incorporated immediately in the
equations of wmotion, which is particularly desirable in
nonlinear cases.

Sometimes even the approximate system of differential
equations and boundary conditions cannot be sclved exactly
for a given equilibrium or vibration problem. A well-known
appraximate procedure named usually after Galerkin may often
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be used, in which displacements are assumed such as to
satisfy exactl; the boundary conditions but not the
differential equuations. An alternative approximate pro-
cedure is that due to Trefftz [10] in which the assumed
displacements satisfy exactly the differential equations
but not the boundary conditions. A natural generalisza-
tion of the two appears to be one in which the assumed
displacements satisfy exactly some of the differential
equations and boundary condition: and are 1ade to satis-
fy the remaining differential egquations and boundary
conditions approximately in the variational sense. The
use of the generalized procedure remains to be explored,
but, togethe: with its above two variants, the procedure
clearly way be considered, und ir effect is, a second
variational approximation in the solution of zn elasticity
problem based on the variational equation of axotion. In
equilibrium problems this is also the final variational
approximation that is rceded.

For problems of vibratcion, and, in parti.ular, non-
linear vibration, a third and final variatiora2! gjpproxi-
mation with respect to tisme is often useful. 1Tt is this
last step that needs the integration with respect to time
which has been included as part of the variational e-
guation of motion. The approximation consists of essen-
tially another application of the Galerkin procedure.

The successful use of ‘t in solving nonlinew: vibration
problems involving single-degree-of-freedom systems has
been demonstrated by Klotter [111. who prefers to call it
the Rits Procedure. In reference 11 it is also mentioned
that the same procedure may be applied to nonlinear vibra-
tion analysis of two-degrees-of-freedom systems. Purther
applicability of the procedure to composite continuous
systems has been demconstrated in reference 9 where non-
linear vibrations of sandwich plates are discussed.

Thus, by the use of the procedure just ocutlined, we
are enabled to derive the approximate solution to an
elasticity problem from a unified point of view and in an
integrated manner, solely on the basis of the variational




equation of motion, although much that is involved may
have been well-known as isolated individual procedures.
In the remaining part of this paper, the nonlinear vi-
brations of homoceneons and gandwich cylindrical shells
will be investigated by means of the proposed procedure,
with a system of nonlinear equations of motion of cylin-
drical shells derived in the first step. The effect of
thickness-shear deformation is included. The problem may
be considered az an extension of the pravious one of non-
linear vibration of szndwich plates [9], and the results
are also reducible to zowe of the linear results obtained
previously for homogeneous [12] and sandwich cylindrical
shells (8],




Nonlinear ations of
eous and Sandwich Cyl cal Shells

Bguations of the sandwich cylindrical shell will be
derived first. Those of the homogeneous shell will then
be obtainable as a special limiting case by putting egqual
to sero the thickness of the face layers of the sandwich
shell. The cylindrical coordinates x, s = a8 and r are
chosen to be in the longitudinal, circumferential, and
radial directions, respectively, of the shell, whose
mniddle surface has the radius a. The middle surface is
further designated as £ = o 80 that the relation between
the two variciles r and = is given by

r=a+ s

In the g-direction the thicknesses of the inner face, core,
and outer face layers of the shell extend frow -h to ’hl’
--l:1 to hl. and hx to h, respectively. In the x-direction
the shell extends from x = o to x = ¢, In the s-direction
the shell is a closed one in the specific vitration prob-
lems to be discussed, bDut the equations derived will also
be applicable to open shells. In particular, the appropri-
ate boundary conditions for an open edge ssconstant as
well as those for x=constant will be formulated.

In the case of small deformations and sma.i angles
of rotation, small in a sense such as specified in
Movoghilov's book [13], the variational equation of motion
in the nonlinear theory of elasticity may be written in
cylindrical coordinates for the sandwich shell as follows:
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In addition, the subscript i = 1, 2,or 3 refers to the
core, inner or outer face layer of the sandwich, Oyj,
Wi, Wgio Wri the angles
of rotation about the x, s, r directions, Pyj. Psi. Pri
the prescribed surface tractions in these directions,
refers to the external normal direction, and @, is the
density. While the volume integral in the eguation is

to ccver the volume of each of the three layers, the
surface integral will cover only those portions of the
surfaces of the layer on which tractions, but not dis-
placements, are prescribed. The equations of motion and
tre appropriate boundary conditions of the sandwich cy-
lindrical shell will be derived from Eq. (1) by carrying
out explicitly the integrauion with respect to z. We note
here that this will involve exactly the same manipulation
as in the corresponding linear case if the ingles of ro-
tation are independent of z, which as we shail see will

Tesir Txri,--e are the stresses,

be assumed.

As in reference 6 the flexural rigiditi-:s of the
face layers will be neglected, and the disp)..:cewents are

assumed in the form

U,z ut ty Ur, Uz = 4 T hV
vz vy Vi.Vy = V¥h @
w, W, szy\/
The angles of rotation w,, and w,, in the cui
a Jw _ v+ 2@
J(r at ¢ r . “s, = E.L ux

Since the face layers have been
angles of rotation about the x-

- - 2w
wa’w}Z h ¢

(3)

are then

-Y)

taken as nembranes, their
and s-directions are

Wy 2 gy = T

ne
3N
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Tha angles of rotation Wy; about an axis normal to the
shell middle surface are in gereral much smaller than
wy; and wgji about axes lying ‘n the surface and are
assumed to be negligible. Among all the angles of ro-
tation, therefore, only wy, depands on z. To simplify
the formulation of the problem, this z-dependence is
suppressed and w,, is assumed to take the simplified
form

Wy = ’%’( %E? - ¢ - ié_)

Since the original z-dependence of Wwx; de-
creases with the thic. aess-to-radius ratio of the shell
and wy, offects only the nonlinear terms, the simplifying
assumption should not introduce much inaccrracy so long
as the shell is thin and the nonlinearity s-all. It is
also noted that the assumption will not a: M Sefeot
symmetrical vibrations which are to be disc 'ssed later
in this paper. To summarize, the angles ot rotation now
tave the form

- 37 3w v -
“)l"-z‘(':-:’ﬁ. g = -ZJ:(%U:J‘V)
= - A
Wy = Wy- = %_\ASI ‘ wy, = Wy = - 2 (4)

When Egs. (3) are substituted in Eq. (1) and inte-
grution is carried out with respect to £, the volume
integrals in Eq. (1) yield a Jdouble integral, involving
the values of the stresses 7., 1., 74" at the
curved boundarica of the shell. The surface integrals in
Eq. (1) yield three parts after integration., The first
part is the result of integration over the curved surfaces
of the shell, which is 21s0 in the form of a double
integral. Wwhen only tractions are prescribed on the
curved surfaces, the two double integrals deduced from
the volume and the surface integrals may be combined, and,
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by equating to zero the coefficients of 8u, v, bw, 8V,
in the resulting integrand, the following stress equations
of motion of the shell are obtained:

NG N E 20
s '(m) B (12)-2(phtpai -0 2= o
1 ¥ * 3

Dap 200, 2 G, 31k (z~ﬁ)—2(F“F~h)v—f/—": ¢=0

_)ﬁf 3&”’ NS B ( :"’)&ka——) 2(ph0h) =0

3

a—,[m,.m,(w,z—m D+s [m;..m,(/vw'/v.‘,)) am
TRCn(1PE) - Bn(-2)- P”" i- (P2 fZF‘»’»thC

Ao b (NEs Y

”I_MXSI HN)‘ Iexse )J*M[_ 5;”‘ //\’53 sz)]‘ rs.u4 h m &m)

*pIn(1) - Tn(d)- F:L"'{/ ~(p2+ ab2h) 4 =0

(5)

where Nx z an * /“I)‘1 4 N,(,
Egs. (5) contain »anly the surface tractions py. Bx, ..

but no longer thc boundary vaiues of the stresses "%
rsio .r;' Tf the two double 3ricgyrals deduced from

Eq. (1) are left uncombined, the integrand of one will

yield shell equations which still contain the latter

stress values, and that of the other will yield the

stress or displacement boundary conditions ic: ihe

curved surfaces of the shell.

The remaining two parts derived from the surface
inteqrals of Eq. (1) are results of integration over
sections across the thickness of the shell, and they are
in the form of line integrals along the edges x=constant
and s=constant, From these line integrals, the following
appropriate boundary conditions are obtained:
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Along an edge x = constant,

J'p(H- )d? oy (,(:u—
2o n R E) o ve Y
b _
Qs [Pt e
My, 0h(N,3-NXL) m'f’(l‘i)di MJ 19(;4’)01?,
(n'ly 1{ (6)

LhJ' ”.ﬂ//*} C‘ b
h " .

m)ga"h,(N:J.fon)‘j_h’ b (:r%)du—h,f'_” Pelit2)dn
reh, — o
—'h‘)hlp'.(”‘%)db ~@= ¢

Aong an edge s = constant (for an open zhell),

x rh- _
’MS*:’_&PXGL or Uil
'\”S’ :,j‘hﬁ;de 07\/77

b 3
:‘J:. ?rdt or W
h
’”"5;.”"("‘9:3"“;:1) J f’.ddlﬂ,} } du-h [ty o y=y
‘h
h-— N . ~
*“ ("’s, NSL) Jf ﬂzdtﬂs,[ 'psat'nJ ysdz ov G-
‘ “h

'h‘ ‘

In Eas. (5) to (7) overbars in general denote pre-
scribed quantitites. Thus p+ . Py §; are the pre-
scribed tractions at the outer boundary £ = <h, p— 5;,
Pz those at the inner boundary z = -h and Py, p, pr those

across the thickness of tie shell. Likevise, a, v, w, v o

are the prescribed values of the shell displacements. The
in these equations are defined

1' o}

shell-stresses introduced
by

[ S
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(M)‘,f y M)(:l )= J(d.";‘,, T )(""—-c;) adt
(M, ME )= (5 Tl Edy

* *

'\N;u' . NX','.) :"\J-(:Oﬂxf,, fx;‘)(l+%) 42
, * * » ¥

(Ng, Nowi )= )r (957, Tsai) 41 (8)
'3 X

(Gurr, Qi) = [ { Ty, T) (1 E)d2

N\

CQS:; ) QI?\'):j ( f,:{ ’ ?:.'s.‘:' ) d?

where the integrations are understood to cover uho> thick-
ness of the laver.

The stress-strain-displacement relations of the
shell will next be formulated. Utinder the aasumptions of
small w,; and wgj and zerc ty; the strair-displacement v<-
lations in the nonlinear theorv nf elast;. ity are [13]

i B 4oy

X1 i d X
: W
C - = bvg - V’ il_ ——
Srl ar Y v Y S

which yield, by virtue of Eqs. (3),

kllllllIIllllIIllIlIlIlllIIllIlIllIIllIllIlllllIIllIIllIllIIllIllIIllIlIIIIlIlllllllllllll__________
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€ QW 2 ¢ Lo,
XTI T IR
&/ AV w 1 =
65‘:7('%?*&%{8)*7*:‘”11
a fJw ph 4 p 2 _
6”"?(3’{**"5"5’)*%%*2&)( Wy Wy
Exry =V ¥ 2%
+ @ a Qv
€= 9" Y T ¥ 53
Qi AV v
€xr, Exz = Tj_i:pl’a;—‘f-"é'(aby“
(9)
- A ‘ v 1] w ul—
€ € =5 (SE F R )L Y
Iy 3 4 DL - w
ém €y $L%;h'%)+};;}‘75‘f Wy, Wy

where iscy, gy, Wx2, uwsZz are given in Eqa. (4)

The stress-Strain r~" ziions for the aterials %

the various layers are

Too = & (G0 1 v €))

“-
-

W

f E. (651 t V" e,\'l)

tx')' T A, 61" (10)

Turl = AY) €,

Terl = My, €ori

where flv =&/ (-vY, M= E,/z(nf\/.‘) - Ej is Young's

modulus, ¥j Poisson's ratio, and,, an additional shear
modulus of the orthotropic core. Successive substitution
of Egqs. (9) in Egs. (10), (2), and (R) yields
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_ h
in = Ny, *'&;,‘ e N];u = Myt Gy Wy 30
b ] ¥ _ . hl
Ngi = Ngi = Qi v R =My * &0
* . w _"?.LL
Moo= N t Qewg; Msxy = Mexi -G %5 330
(A - ) ¥ A - h*
NXS; - N)";: &X) u)X- MXSI 'w)‘al 6)){;“})"3‘& (11)
%x . b 3 .
an. - a‘. *N}S;u)xl-_N)“u)g, a\fxo = &;(l

&Srl a ’fN LO)‘,‘-—NSX, w_f).‘ Qrfl = &5,

where

o~ 7’ ét
Nusj o(irdiaesze

A)Slzj'jéldé’ZE,I),“‘.)-!-;_V_‘('M_‘)_)\_:_ f}ip y p)

L& Ja 3t T Wt e
N«:’J{,\T (I*g‘ = ,UM.[i;—?+ﬁ+;{f.§—§"“w‘usfj
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R TR NATEE O I
Vi = [ Galirdy et QR (55 em Had 5 )

~ o Uk Y _
M = [Tl 19 R) 2 = R (BT RS d

25  xX
3 .
- Lh, g9 _ 1 2w
V\Sx':ftg, tdt’ /“.-"—‘3 ( %'\sl + ’a'% a 35)

Ny, N = [ (T, G) (2 )dr

= (0 '(y;*" A "—0—"*5&)
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v i hys Y, wo, ad
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tlw b (3 h 3+ )]

7h.%—‘f—‘ S Wa) ¥ 2% 5 e 3Y
i . . . i | N :
Newe Nena = (T, Toxz)dt = /““"L[{'iﬁ)( >3 ;""3%*)

v 2y
T3 Fh AL - Wiy, Wstj

i
\
J

Ap < Qo= 5., = 0

. =
<o

53 =0

As those in Ege. (8), the limits of thie inlecrations in
Egs, (12) cover the thickivss cf the layer., In carrying
out these integrations the 4nia.shell aLrumptic: of
kl/56\1~:; | h=2s been made use of wherev 'r applicable,

In éﬁe expressions of Oy and Qs a shear ceelficient X/
has Tzen incrertzd in the riie manner as ir the linear case
f14, 15, © aie ray also Ic deivrmired sin’larly. The
transversze shear foroew:s Qx2, Qs2. 0Ox3, =3 T2 zero be-
cause the f[face layers have been assumed to be membranes.

Substitvtion of Frs, (11), and (12) in Zags. (5) leads
immediately to the displacement equations of motion, al-
though the results will not be recorded licic.

The system of Egs. (5), (€}, (7), (11), and (12) may
be readily reduced to previous results fc. :impler special
cases, Thus, by letting the radius a egual to infinity,
the nonlinear equations of sandtwich plates of reference 9
are obtained. ©€n the otrer tand, if the nonlinear effect
is suppressed, we arrive it one of the simpler systems of
lincar equations of szadwiclh cylindrical shells of refereace
2, which are further rcducible to the eguations of homo-

geneous shells of reference 12,
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Modification and Simplification of Equations

As in reference S5, a second system of equations of
somewhat better accuracy may be derived by assuming, in-
stead of Egs. (3),

U, = wt eV Ay, Uy = WF(hthofs)y

- +h
v oz vty v, vy = V3 (h*h /o)y

The resulis are similar %o Bge, (S), (&Y, (7Y, (11), and
(12). In fact, they are ohtainable from these equations
by replacing h; by hy + b>/2 in the last two of Egs. (5)
(except the h; in 2h33/3, in the last two of Egs. (6) and
those of Egs. (7) (except the hy in the linits of the inte-
gratior), and in t' - expressions of Nyy, :3, Ng2. Ns3.
Nys2. Vg3, “Jgx2. Jsx3.in cquations (12} . with the
modifications ..ade, we chall dcsignate the newlv obtainer?
second system of equations as

Egs. (5), (6), (7), (11), {12) modified

'y, 6"y, (2", (11", 22h
As may be seen from Egs. (11} and (12), by having
taken into consideration the rotations w,; and wg, in the
core, not only the membrane forces Ny) 6 Ngj Nygy and

Ngy) themselves arc :ffected, but also the: are avgmented
by the transverse shear forces (,; and 041, Conversely,
the transverse shear forces are also augmented by the mem-
brane forces. Since for relatively low frequencies the
motion of the shell is predominantly transverse in nature,
the contribution of QOy) and 0,, to the membrane forces
should be of less importance than the contribution of Ny},
Ng1, Nyg), and Ngy) to the transverse shear forces. The
contribution of Qy) and Q4 to the moments is also small,
#or., according to Egs. (1l1), they are multiplied by troth

a amall angle of rotation wy] or wg] and a small factor
h12/3a. As a simplification, the contributions of Qyl
and Qg3 to the membrane forces and moments are neglected
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in Eqs. (11). If we are primarily interested in low fre-

quencies for which the motion is predominently transverse,
the inertia terms involving u, v, ¥ and ® become of much
less importance than the transverse inertia term involving

w and may also be neglected. Incorporating both types of
simplifications, we shall designate the results obtained

from the first system of equations by

Egs. (5), (6), (7), (11), (12) simplified
{Sa), (6a), (7a), (llia), (12a)

The second system of equations may similarly be simplified
and denot*ed by

Egs. (5'), (6*'), (7'}. (11*), (12') simplified
(sa'), (6a'), ‘72'), {(1la'), (l2a‘')

For sandwich shells with soft cores rr.. nembrane forces
and moments in the core may further be neg'cted, that is,
we may put

Nay = Ngo = M = Nga = R 2 2 2 Mg, - Mo, = O (13)
Contrary to this, we have in the case of hoiogeneous shells,
for which hy = 0,

N}L = /VSL = ,UXﬁl = ,\’;X.. 0 (14)

In the axially symmetrical case with zero surface tractions,
Eqs. (5a') hecome

{;(N}“f’N;L + ,\)Y,) = 0
) Aoy, )
f;(M,,*(h,*;)('V,(g’N“)J - Qx) = C

5:); {G"'vl\’m""‘u'( Nt Nye) ws,:) (1)

_"(j:'(N«;,*'IV,’.‘.‘/\}Sv,) = 1 ({;ih' *(}L“L)\'\:’
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1

3
&4 (Vs Lu's b wst)
62,, = Dx' Mu“g (_1\”"' W”)
l
{ Vl,_ - h_...’ -~y 7/ J— A gl'
N)x‘:zg)hitu,‘ a. WIB‘;\ ‘V +:: ’)

Ngj = 2& 0 (2 + v w'+ 2 wyl)

Nm_-t- NXS = 2&1\1[“’* _2-_[;,‘?%) ){"; Yewsd w®i

z 2 S"J
N,-N,.= 2¢& [/;.fhl- 14 h 14 ¥ i (16)
p 3 X+ rhy) (h Y+ = nw'tha

t 1.) o 200 SL_/
A‘ +A R Y —-—; ! V e
Nt N, 26-&( La MR .I:Lwn_)

with primes denoting differentiation with respect to x,
The final simplifications given hv Egs.

1Y and (14) will
be ir:srporated in Egs. (15) in the next s:ctionsg in wnich
axially symmwet-ical vibrations »f sandwicn and homogeneor<c
cylindrical shells are discussed.
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Nonlinear Vibrations or Homogeneous and
Sandwich Cvlindrical sholls

Tt should be emphasized at this point that each of
the above systems of shell eqrations is essentially the
result of putting to zero the coefficients of the varia-
tions of the displacements in the integrands of the now
simplified variational equation of motion, simplified in
that it no longer contains the integration with respect
to z. For those of the shell equations that can be solved
and satisiied exactly in a given problem, the correspond-
ing ~aefficients will simply drop out of the simplified
variationai equ ::ion of motion. On the other hand, for
thosc shell equations tha* caruct be solved coxactly, the
corresponding coefficients will remain. Subsequent vari-
ational approximation may then be performes, which males
the latter ecuations eveontually also satisfied, at least
approximately in the variational sense. Thnis procedure
will now be demonstrated by the following Ziscussion of
axially symmetrical vibratior ~f huimogenecus and sandwich
cylindrical shells with immovable hinged edzes,

The homogeneuvus cylindrical shell will be considered
first, for which Egs. (14) to (16) yield

Vv

n A 1] T 3 LA
W'+ Tw +;{:¢ + wow' = 0

(17)
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3
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where the only rotatica component involved is now
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The subscript 1 has been dropp2d from all notations in
Egs. (17) to (19). The shear modulus u is now for an
istropic material, and the shear coefticient has the
usual value of n2/12 7141, although it may als> be as-
signed the value of infinity for the purpose of suppress-
ing the transverse shear effect.

From Eqs. (17) and (18) u* is first eliminated. Into
the result are substituted

Wz WY TiE) S Ahl , W= P Ut) ws —’5,—1’5 (20)

which satisfy the conditions of zero deflection and
moment at the hinged edges x = 0,f. It is then found
that

N )

e S

¥o=-Yg W, 7=

jr2aay s i-v) (21)

In Egs. {20) .ad (21) we have >= nrh/{ , withn =1,2,3, ,
designating the number ot nalf-waves in tie len~th f ot the
shell, and 7(t) is the unkunown time function. u is next
solved from Eq. (17), into which w and V a:2 substituted.
Together with the use of the boundary conditions of u = 0
at the immovable edges x = 0, { , we find

_3VEIA " 1ty)" v
ar T L W@ ore k) IR s, 0

2a

where *( - - (-’) "

Egs. (20) to (22} thus satisfy exactly all the boundary
conditions and the governing Egs. (17) and (18). However,
it is easily verified that they do not satisfy the remain-
ing governing Eq. (1%). Since the left side of Eq. (13) is
the coefficient of &W in the double integral (actually re-
duced to a single integral of x in the present plane-strain
problem) in the variational equation of motion, and since
we now have

fw = Sw:z%? S(WT)




according to Eqs. (20) we may carry out explicitly the
integration with respect to x over the length of the
shell and put the coefficient cf §(Wr) equal to zero.
Thus, there results

where

o 3
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This in essence has completed a second vari*tiorial approxi-
mation, with respect to the second and last rremaining
space coonrdinate x, althovgh the approximation applies

to only one of the governing differentiali eguations. 1If
needed, the procedure could have also been -pplied to any
other or all of the differential equations :.ad boundary
conditions.

To determine the nonlinear frequency it is convenient
to carry out a last variational approximation with rescpect
to time, in connection with Ea., (23). The left side of the
equation is essentially the coefficient of §(WT) in the
variational equation of motion, which has now been much
simplified, since the time integral is the only one re-
maining. The integration with respect to time may be
carried out explicitly hy first assuming say, 7 = sinuet,
and by selecting t, = 0 and t, = 2n/w as the limits of
integration. The coefficient of W is finally put equal
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to zero to yield

v o
w =t 2%.J3
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e ht "i(‘-":;;' 3t.5v) ¥ “/(L/a,)
It is intercsting to note that the approximate nonliinear
frequency is independent of Ogye

In a similar manner we may investigate the vibration
of the sandwich cylindrical shell, to which Egs. (15) and
{16) together with the simplifications in Eqgs. (13) are
applicabie. The equations of motion in terms of the 2is-
placements are of the final form
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The shear coefficient X, may be taken equal ‘o 1 for
ordinary sandwich shells {15, 1], although ic may alsc
be set equal to infinity for the purpose of svppressing
the transverse shear effect.

Egs. (25) are entirely similar to Egs. (17) to (19)
and the same method of solution is applicable. The results
are
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and W v 3 S
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The nonlinear freguency is again given bty the approximate

expression

which is now
L /qt r "l f
Poht I+ fV I/or’ +7, [, )71’

L Wt ARVAD S ..2..“_"’“’ : 3 (26)
e Tw;vv.r.f*‘/x.)(' neel ! Z('LZ '

Eq. (26) is reducible tc the result for th- nonlinear
frequency of sandwich plates (9] by letting a egual to
infinity, and to the result for relatively low linear
frequencies of sandwich cylindrical shel}a {81, by
dropping the nonlinear term (3/4) (w/2h)*

The frequencics of nonlinear symmetrical vibrations
of homogeneous and sandwich cylindrical shells have thus
been determined solely on the basis of the variation e-
quation of motion, by carrying out variational approxi-
mations wherever needed. Further refincments may be rade
in the analysis and the discussion may readily be extended
to non-symmetrical vibrations and to other types of
boundary conditions, but the relatively simple cases pre-
sented here are clearly sufficient for illustrating the
variationnal procedure that is being proposed.
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Discussion of Results

The results in Eas. (24) and

(26) give the frequencies

for the lowest family of axially symetrical mocdes of vi-
bration of the cylindrical shells, which are predominate-

ly transverse in nature.

The effect of thickness shear

deformation is associated witih the X - or ){y- terms, and

its importance is seen to vary directly with Az.

putting ) or xy equal to infinity

suppression of the shear effect, Eas.

Since
is equivalent to the
(24) and {26) show

that, disregarding nonlinear and curvature effects at
this moment, the shear effect by itself becomes neqgligible

if

... 't
AL L ——
/AN

{homogeneous)

(sandwich)

These conditinns apply to plates as well ~s shells, Since

r2ry for ordinary sandwic’. struvctures is «sually of +h.

order of between 10 and 1107,

tine shear eitect is much more

important for sandwich than for homogeneni:a plates and

shells,
for sandwich structures {16,
The Wz/dhz- and hz/az- terms

In general, the shecar effect shovrld be considered

in £ga. (24) and (26)

reflect, respectively, the nonlinear and curvature effects,
vhich are completely uncoupled from each ciher. Terns
2sscciated with the coupling hetween the twn cffects would
be present in the equations, if we had employed more exact
Since it is the
approximate expressions of the rotation components in Egs.
{4} which have been used and which are the same as those
for plates, the noualinear terms in £gs. (24) and (26) are
In the case

expressions of the rotation components.

also essentially the same as those for plates,

of sandwich plates, the nonlinear
fore in rcference 9, where it was
effect would overshadow the suzar

effect was discussed be-
found that the ncnlinear
effect if

(27)
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